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Introduction

• Next generation rendering
– Higher quality per-pixel

• More effects

• Accurate computation

– Less triangles, more sophistication
• Ray tracing

• Volumetric effects

• Post processing

– Real world details
• Shadows

• Lighting

• Geometric properties



Surface rendering

• Surface rendering stuck at

– Blinn/Phong

• Simple lighting model

– Normal mapping

• Accounts for light interaction modeling

• Doesn’t exhibit geometric surface depth

– Industry proven standard

• Fast, cheap, but we want more…



Improvements

• Several titles tackled high quality 
surface rendering

– Gears of War

• Multiple custom materials

– Different light properties

– Additional geometric details

– Crysis

• Multiple custom surfaces

– Exhibit natural phenomenon

» Ice

» Skin

» Parallax mapped terrain features



Terrain surface rendering

• Rendering terrain surface is costly

– Requires blending

• With current techniques prohibitive

– Blend surface exhibit high geometric 
complexity



Surface properties

• Surface geometric properties

– Volume

– Depth

– Various frequency details

• Together they model visual clues

– Depth parallax

– Self shadowing

– Light Reactivity



Surface Rendering

• Light interactions
– Depends on surface microstructure

– Many analytic solutions exists
• Cook Torrance BDRF

• Modeling geometric complexity
– Triangle approach

• Costly
– Vertex transform

– Memory

• More useful with Tessellation (DX 
10.1/11)

– Ray tracing



Motivation

• Render different surfaces
– Terrains
– Objects
– Dynamic Objects

• Fluid/Gas simulation

• Do it fast
– Current Hardware
– Consoles (X360)
– Scalable for upcoming GPUs

• Minimize memory usage
– Preferably not more than standard 

normal mapping
– Consoles are limited



Motivation

• Our solution should support

– Accurate depth at all angles

– Self shadowing

– Ambient Occlusion

– Fast and accurate blending







Existing Solutions

• Depth complexity

– Calculate correct surface depth

• Find correct view ray – height field 
intersection

– Compute lighting calculation using 
calculated depth offset
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Online methods

• Perform ray tracing using height 
field data only

• Additional memory footprint

– 1x8 bit texture

– May use alpha channel

– DXT5 – OK!

• Remember about alpha interpolation!



Relief mapping

• Relief mapping (Policarpo 2005)

– Performs intersection calculation by 
linear search in 2D height field space

– Refines the result by binary search 
near the point of possible hit
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Linear Search

• Linear search in each step

– Check if ray over height field

– If YES

• Move the ray by const distance

– If NOT

• Stop and go to Binary Search



Linear Search

• Capped by max iterations

• Dynamic early out on stop 
condition

• Utilizes independent reads and 
linear filtering

– Hardware optimized

• Fast for small number of iterations



Linear Search

• Drawbacks

– Slow convergence

– Prone to aliasing

• With large steps may miss height field 
features

– Scales bad with high resolution 
height fields

• Worst case iteration count is n*sqrt(2) for 
n texel height field
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Binary Search

• Static number of iterations

• Performs search along last step 
vector

• Converges fast

• Utilizes linear filtering



Binary Search

• Drawbacks

– Utilizes dependant reads

• Not optimized hardware

– Slow

– Adds GPR

– May find wrong intersection due to 
linear search fault

• On its own unusable
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Parallax Occlusion Mapping

• POM (Tatarchuk 06)

– Substitutes costly binary search by 
piecewise linear approximation using 
ALU

– Adds several performance 
improvements to linear search

• Dynamic iteration count

• LOD system

• Approximate soft shadows



Parallax Occlusion Mapping

• Pros

– Faster than relief mapping

• Cons

– Same as for linear search

– Inaccurate intersection point 
resulting in missed features for the 
cost of less noticeable artifacts



False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

POM

linearly
approximated
intersection

View Ray



Preprocessed method

• Several methods rely on 
preprocessed data

– Per-pixel Displacement with Distance 
Function

• Using additional 3D textures rising 
memory footprint to much

• Impractical

– Cone Step Mapping

– Relaxed Cone Step Mapping



Cone Step Mapping

• CSM (Dummer 2006)
– Based on Cone Maps

• Associate circular cone to each texel of 
height field

• Per-texel cone is the largest cone, not 
intersecting the height field

– Performs linear search with step length 
determined by actual cone radius
• Leaps empty space

– Conservative approach
• Allows accurate intersection computation

– Requires additional uncompressed 1x8bit 
texture for cone angles



Cone Step Mapping

• Pros

– Very fast

• Requires significantly smaller number of 
iterations than pure linear methods

• Under-sampling provides distortions 
artifact, less noticeable than interleaving

– Accurate

• There is no possibility to miss a feature



Cone Step Mapping

• Cons

– May not converge in reasonable number 
of steps

• Needs iteration cap

– Performance highly dependant on height 
field complexity

– Horrendous preprocessing time

• 256^2   - ~2 min

• 512^2   - ~14 min

• 1024^2 - ~7.5 h

– Effectively impractical for interactive 
artist tweaking or on-the-fly generation
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Quadtree Displacement 
Mapping

• QDM

– GPU optimized version of classic 
terrain rendering, hierarchical ray 
traycing algorithm [Cohen ans Sake 
1993]

– uses mipmap structure resembling a 
dense quadtree storing minimum 
depth to the base plane of height 
field



Quadtree Structure

• Simple construction

– Mipmapping with min operator 
instead of average

• Hardware optimized

• Small memory footprint

– 1x8bit texture with MipMaps



Quadtree Structure

• Quadtree can be generated on-
the-fly

– Negligible performance loss

GF 8800 256^2 512^2 1024^2 2048^2

Quadtree 0.15ms 0.25ms 1.15ms 2.09ms

CSM < 2min <14 min <8h /



QDM

• Ray tracing

– Traverse the quadtree

• From root (max MIP-hierarchy level)

• To lowest leaf (MIP-hierarchy Level 0)

– MIP Level 0

• Accurate intersection

• Can get inter-texel results using

– Linear approximation

– Binary Search

– Bilinear Patch



Ray tracing

• While(Hierarchy_Level > 0)

– Depth =getMaxDepth(Pos,Level)

– If(Ray_Depth < Depth)

• Move_Ray_To_Nearest_Intersection

– Else

• Descend_One_Hierarchy_Level

• Find_Accurate_Intersection



QDM construction
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QDM construction
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QDM construction
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing
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QDM Ray tracing

• Algebraically perform intersection test 
between Ray, Cell boundary and minimum 
depth plane
– Compute the nearest intersection and move the 

ray
– In case of cell crossing choose the nearest one

• Ray is traversing through discrete data set
– We must use integer math for correct ray 

position calculation
• SM 4.0 – accurate and fast
• SM 3.0 – emulation and slower

– Point Filtering
• LinearMipMapLinear is possible but may introduce 

some artifacts
– Trade samplers for artifacts
– i.e. when using same texture for normal and depth 

storage



QDM Ray tracing

• Refinement
– LEVEL 0 yields POINT discrete results
– Depending on surface magnification and 

need for inter-texel accuracy additional 
refinement method may be used
• Binary Search

– Usable for non linear surfaces

• Linear piecewise approximation
– Fast
– Accurate due to approximation between 2 

texels only

• Bilateral Patch
– most accurate for analytic surfaces
– Requires additional memory
– slow



QDM Ray tracing

• Fixed iteration count

– Complexity O(log(n))

• Still may be prohibitive

– Set maximum iteration count



QDM Ray tracing

• Method degeneration
– Algorithm can’t go up in hierarchy

• Typical scenario at feature edge
– Ray reaches low level and passes by (cell 

crosses)

– Further ray advances are at current or lower 
level – degenerates to linear search

– Possible solutions
• Compute the optimal level after  cell cross –

expensive, doesn’t suit GPU

• Go one level up after node crossing
– Simple and fast – works for most cases

– Solution performance gain can be seen 
when using high iteration cap



QDM LOD

• LOD scheme
– Can’t use traditional MipMapping

– Limit stop condition to LOD level 
computed from current MIP level
• High performance gain

• Small feature fidelity loss at grazing angles
– Mostly unnoticeable

– Dynamically adjust iteration cap
• Linear function of angle between geometric 

normal and viewing vector

– Fade QDM depth scale (0  = normal 
mapping only) by linear function of 
camera space Z



QDM Storage

• QDM is a discrete data set

– Needs accuracy

• Uncompressed textures preferable

– 1x8BIT uncompressed texture

– With accurate integer math possible 
to use compressed data

• DXT5 alpha interpolation – bearable

– May exhibit small artifacts at feature 
edges depending on height field profile



QDM

• Pros
– Accurate under any circumstances
– Fast and scalable

• Faster than any online solution for high 
depth scale and high resolution height fields 
(>512^2 worth consideration)

– Negligible additional memory footprint
– Negligible preprocessing time
– Trades iteration count for calculation 

quality
• High ALU:TEX rate

– Good for upcoming GPU
– Not that great for current generation…

– Other benefits of using quadtree data…



QDM

• Cons

– Slow per iteration

– Uses tex2Lod with random access

• Incredibly slow on current GPUs

– High cache miss ratio

– 30% increase in sampling performance 
due to 3D texture usage

» However impractical for memory 
reasons

– Not that fast for small depth scale 
and small resolutions



Comparison

• Analytical performance

– Relief Mapping ~   sqrt(n)

– CSM <= sqrt(n)

– QDM ~    log(n)



Comparison

• Convergence 
(iteration count)

POM

QDM

0

256

128



Comparison

• Following comparisons shows accuracy and 
performance difference between POM and 
QDM in real game scenario of Two Worlds 2

• CSM and RCSM were thought to be 
impractical for production due to 
preprocessing time
– We assume RCSM being the fastest possible 

method for height fields < 1024^2
– RCSM results come from test framework, where 

it outperformed every other solution by at least 
50%

– Several cases exist where due to height field 
complexity RCSM is unusable

– We didn’t test for >1024^2
• Life is too short ;)



Comparison

• Average Scene Results – full screen 
effect (Full HD) on GeForce 260 GTX

– Iteration count set for non artifact rendering
• Even at grazing angles 

– Various height fields of resolution 512^2 –
1024^2

– Timing given = technique time – normal 
mapping time

Depth Scale POM QDM

1.0 5ms 5.66ms

1.5 6.66ms 6.7ms

5.0 18.87ms 9ms



POM Depth Scale 1.0



QDM Depth Scale 1.0



POM Depth Scale 1.5



QDM Depth Scale 1.5



POM Depth Scale 5.0



QDM Depth Scale 5.0



Comparison

• Extreme detail test case 

– one full screen surface at grazing angle

– 2048^2

– High depth scale

– High frequency height field details

POM QDM

73ms 14ms



Self-shadowing

• Features of the height map can 
cast shadows onto the surface

• We can test if the displaced point 
P on the surface is visible from the 
light source L

– Ray trace from the point to the light 
source

– If intersects with the height field we 
are in shadow
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Self-shadowing

• Reverse ray tracing is expensive and 
yields hard shadows
– N*Ray tracing cost

• We can calculate horizon visibility to 
obtain self-shadowing (POM 2005)
– Sample along height field from displaced 

point in direction of the light source

– Compute height profile angle by
OP(P_height – Pn_height)
• Pn – n-th sample in L direction

• OP – operator : min/max , avg…

– Stop when height profile over light ray



Self-shadowing

• We can obtain soft shadows by 
filtering sampled values
– Having blocker height we use linear 

distance function to approximate 
penumbra size

• Algorithm complexity O(n)
– n – number of height field texels along 

given direction

• For performance reasons we limit 
sample count
– Limits shadow effective length

– Look out for aliasing
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Self-shadowing

• We can further approximate soft 
shadows just by horizon visibility 
query in given light direction

float2 lDir = (float2(l.x, -l.y)) * dScale;

float h0 = tex2D(hTexture, P).w;

float h = h0;

h = min(1.0, tex2D(hTexture, P + lDir ).w); 

h = min(  h, tex2D(hTexture, P + 0.750 * lDir).w); 

h = min(  h, tex2D(hTexture, P + 0.500 * lDir).w); 

h = min(  h, tex2D(hTexture, P + 0.250 * lDir).w);

float shadow = 1.0 - saturate((h0 - h) * selfShadowStrength);
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QDM Self-shadowing

• Observation for light occlusion 
computation
– Small scale details at distance have 

negligible impact on the total occlusion 
outcome

• We can approximate further lying 
profile features using maximum 
height data from QDM
– Minimize needed number of queries

• Full profile can be obtained in log(n) 
steps opposed to (n)

• We compute penumbra shadows by 
correct distance scaling of shadows



QDM Self-shadowing
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QDM Self-shadowing

• Sample code

– Fast

– Values tweaked by artist

float2 lDir = (float2(l.x, -l.y)) * dScale;

float h0 = tex2Dlod(heightTexture, float4(P,0,0)).w;

float h = h0;

h = min(1.0, w1 * tex2Dlod(heightTexture, float4(P + 1.0  * lDir,0,3.66)).w); 

h = min(h, w2 * tex2Dlod(heightTexture, float4(P + 0.8  * lDir,0,3.00)).w);     

h = min(h, w3 * tex2Dlod(heightTexture, float4(P + 0.6  * lDir,0,2.33)).w);     

h = min(h, w4 * tex2Dlod(heightTexture, float4(P + 0.4  * lDir,0,1.66)).w); 

h = min(h, w5 * tex2Dlod(heightTexture, float4(P + 0.2  * lDir,0,1.00)).w); 

float shadow = 1.0 - saturate((h0 - h) * selfShadowStrength);

return shadow;



QDM Self-shadowing

• Self-shadowing

– Adds depth

– Quality

– Moderate cost

• Full search only log(n)

• Depends on shadow length (iteration cap)

• Independent reads

• Fast ALU

• Full screen effect on test scene/machine

– 0.5ms



QDM SS OFF



QDM SS ON



Ambient Occlusion

• AO
– Represents total light visibility for point 

being lit

– Adds depth

– Can be computed and approximated 
similarly to self shadowing
• We perform several horizon occlusion 

queries in different directions

– Need to calculate only when height field 
changes

– Especially useful for large scale terrain 
scenarios (i.e. darkening objects laying 
in a valley)



Ambient Occlusion

• Horizon queries
– For each pixel perform horizon queries in 

const n equally spaced directions and 
average results
• Fast

– n*cost of horizon profile querying

• May need many directions
– 4-12 shall work fine

– Can use jittering
• For each pixel rotate directions by random
• Can get away with 4 directions

– Uses dependant reads
– Still better results than more directions

• Generally expensive
– Use at content generation
– If dynamic use time amortization



Surface Blending

• Used mainly in terrain rendering

• Commonly by alpha blend 
– V = w * V1 + (1-w) * V2

• Blend weights typically encoded at 
vertex color
– Weights being interpolated

• More accurate and flexible 
encoding blends in textures
– Problematic

– Large memory footprint



Surface Blending

• Alpha blending is not a good 
operator for surface blending

– Surface exhibit more variety in 
blends than simple gradients from 
per-vertex interpolation

– In real life surfaces don’t blend

• What we see is actually the highest 
material (or material being on top)

• Rocks and sand – at blend we should see 
rocks tops



Height Blending

• Height blending

– Novel approach using height 
information as additional blend 
coefficient

f1 = tex2Dlod(gTerraTex0Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.a = 1.0 - f1.a;

f2 = tex2Dlod(gTerraTex1Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.b = 1.0 - f2.a;     

f3 = tex2Dlod(gTerraTex2Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.g = 1.0 - f3.a;     

f4 = tex2Dlod(gTerraTex3Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.r = 1.0 - f4.a;

FinalH*= IN.AlphaBlends;

float Blend  = dot(FinalH, 1.0) + e;

FinalH/= Blend;

FinalTex = FinalH.a * f1 + FinalH.b * f2 + FinalH.g * f3 + FinalH.r * f4;



Blend Weights



Final Blend Color



Height Blending

• HB

– Adds variety

– Cost is minimal

• Opposed to discussed methods

– Prefers the highest surface

• Intersection search phase therefore needs 
to find highest point only



Displacement with HB

• Displacement mapping

• May use any intersection search 
technique

• Need to reconstruct surface profile 
from blend weights and individual 
height fields

– Commonly alpha blend used for 
surface reconstruction

• H = alphaBlend(h1,h2,h3,h4,W_Vec)



Displacement with HB

• Displacement mapping with HB

– Using HB operator seems more 
natural for surface reconstruction

– New blend operator

• HB = max(h1,h2,h3,h4)

– Optimal in terms of convergence

• HB >= alphaBlend

– Ray will hit HB surface faster



Displacement with HB

• While searching intersection using any 
online algorithm simply substitute actual h 
sample by result of blend equation

• Can cut search region by max blend weight
• Using per-vertex blend weights produces 

view dependant depth floating artifacts
– Negligible with small depth scale and depth 

scale minimization at blend zones

• For correct results use per-pixel blend 
weights
– Can compute small texture from vertex blend 

weights 



Displacement with HB

• While searching intersection using any 
online algorithm simply substitute actual h 
sample by result of blend equation

• Using per-vertex blend weights produces 
view dependant depth floating artifacts
– Can not reconstruct correct surface height as 

blend weights are constant taken from view 
vector position

– Negligible with small depth scale and depth 
scale minimization at blend zones

• For correct results use per-pixel blend 
weights
– Can compute small texture from vertex blend 

weights 
– Additional sample
– Must use for high depth scale and accuracy
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Displacement with HB

• Preprocessed data relying on 
distance (Distance Function, CSM) 
cannot be used with blend weights 
without pre-computation

• Preprocessed data relying on 
depth can be used with modified 
weight structures



QDM with HB

• QDM is based on depth data

• Observation

– max(x1,…,xn) * max(w1,…,wn) 
>= 

max[(x1,…,xn) * (w1,…,wn)]

• QDM1 * QDM2 = Conservative QDM

– CQDM at Level 0 represents exact 
surface blend with HB operator

• This is possible only with non-
aggregate operators (min,max)

– NOT! AVG, Weight AVG – Alpha Blend



QDM with HB

• QDMHB
– Effectively we can use QDM with all its 

benefits while blending surfaces for 
artifact free rendering

– Cons
• On-the-fly / pre-computed  Blend QDM

– Blend Texture from vertex

– QDM from blend texture

• Conservative approach
– Slower convergence

– More iterations may be needed dependant on 
field complexity

– In practice <10% more iterations than 
needed



QDMHB



Surface blend comparison

• In game scenario on test machine
• Timing given = technique time – normal mapping time

• Per-Vertex Blend with 4 surfaces

Relief  Mapping POM POM with HB

3ms 2.5ms 1.25ms



Relief Mapping



POM Alpha Blend



POM Height Blend



Conclusion

• Valid solution for every scenario

– Know what you need

– Compose you solution from given 
building blocks

• POM, QDM, Self Shadowing, AO, Height 
Blend – Per-Vertex/Pixel

• As needed… 



Conclusion

• On limited hardware

– Optimize as much as you can

• Terrain - fast low iteration POM with Per-
Vertex HB, computed only for textures 
that really benefit

• Special Features – QDM with Soft 
Shadows

• General Objects – use low iteration POM, 
Soft Shadows at artist preference, check 
whether QDM is optimal for >1024^2 



Conclusion

• On limited hardware

– Trade ALU for bandwidth and memory

• Generate specular textures on the fly

– From difusse

– By artist set per texture coefficients for 
functions input

» Pow

» Scale

» Invert

– Our terrain solution as seen on screens 
utilize only one DXT5 texture while using 
Shirmay-Kallos lighting equation





Conclusion

• Look out for future GPUs

– Proposed high ALU methods will be 
even more beneficial for new 
architecture

– Ray tracing vs. tessellation ?

• Will see…

• Happy surfacing!
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Additional Info

• Additional information will be 
available in upcoming technical 
article, go to

• www.drobot.org – for details

• hello@drobot.org

http://www.drobot.org/

