
Quadtree Displacement Mapping
with Height Blending

Practical Detailed Multi-Layer Surface Rendering

Michal Drobot
Technical Art Director

Reality Pump

Outline

• Introduction

• Motivation

• Existing Solutions

• Quad tree Displacement Mapping

• Shadowing

• Surface Blending

• Conclusion

Introduction

• Next generation rendering
– Higher quality per-pixel

• More effects

• Accurate computation

– Less triangles, more sophistication
• Ray tracing

• Volumetric effects

• Post processing

– Real world details
• Shadows

• Lighting

• Geometric properties

Surface rendering

• Surface rendering stuck at

– Blinn/Phong

• Simple lighting model

– Normal mapping

• Accounts for light interaction modeling

• Doesn’t exhibit geometric surface depth

– Industry proven standard

• Fast, cheap, but we want more…

Improvements

• Several titles tackled high quality
surface rendering

– Gears of War

• Multiple custom materials

– Different light properties

– Additional geometric details

– Crysis

• Multiple custom surfaces

– Exhibit natural phenomenon

» Ice

» Skin

» Parallax mapped terrain features

Terrain surface rendering

• Rendering terrain surface is costly

– Requires blending

• With current techniques prohibitive

– Blend surface exhibit high geometric
complexity

Surface properties

• Surface geometric properties

– Volume

– Depth

– Various frequency details

• Together they model visual clues

– Depth parallax

– Self shadowing

– Light Reactivity

Surface Rendering

• Light interactions
– Depends on surface microstructure

– Many analytic solutions exists
• Cook Torrance BDRF

• Modeling geometric complexity
– Triangle approach

• Costly
– Vertex transform

– Memory

• More useful with Tessellation (DX
10.1/11)

– Ray tracing

Motivation

• Render different surfaces
– Terrains
– Objects
– Dynamic Objects

• Fluid/Gas simulation

• Do it fast
– Current Hardware
– Consoles (X360)
– Scalable for upcoming GPUs

• Minimize memory usage
– Preferably not more than standard

normal mapping
– Consoles are limited

Motivation

• Our solution should support

– Accurate depth at all angles

– Self shadowing

– Ambient Occlusion

– Fast and accurate blending

Existing Solutions

• Depth complexity

– Calculate correct surface depth

• Find correct view ray – height field
intersection

– Compute lighting calculation using
calculated depth offset

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

View Ray

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct
View Ray

Online methods

• Perform ray tracing using height
field data only

• Additional memory footprint

– 1x8 bit texture

– May use alpha channel

– DXT5 – OK!

• Remember about alpha interpolation!

Relief mapping

• Relief mapping (Policarpo 2005)

– Performs intersection calculation by
linear search in 2D height field space

– Refines the result by binary search
near the point of possible hit

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

Linear search with static step length

HIT

View Ray

Linear Search

• Linear search in each step

– Check if ray over height field

– If YES

• Move the ray by const distance

– If NOT

• Stop and go to Binary Search

Linear Search

• Capped by max iterations

• Dynamic early out on stop
condition

• Utilizes independent reads and
linear filtering

– Hardware optimized

• Fast for small number of iterations

Linear Search

• Drawbacks

– Slow convergence

– Prone to aliasing

• With large steps may miss height field
features

– Scales bad with high resolution
height fields

• Worst case iteration count is n*sqrt(2) for
n texel height field

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

Linear search with static step length

HIT

MISS

View Ray

Binary Search

• Static number of iterations

• Performs search along last step
vector

• Converges fast

• Utilizes linear filtering

Binary Search

• Drawbacks

– Utilizes dependant reads

• Not optimized hardware

– Slow

– Adds GPR

– May find wrong intersection due to
linear search fault

• On its own unusable

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

Binary search with static step length

Binary search region

View Ray

Parallax Occlusion Mapping

• POM (Tatarchuk 06)

– Substitutes costly binary search by
piecewise linear approximation using
ALU

– Adds several performance
improvements to linear search

• Dynamic iteration count

• LOD system

• Approximate soft shadows

Parallax Occlusion Mapping

• Pros

– Faster than relief mapping

• Cons

– Same as for linear search

– Inaccurate intersection point
resulting in missed features for the
cost of less noticeable artifacts

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

POM

linearly
approximated
intersection

View Ray

Preprocessed method

• Several methods rely on
preprocessed data

– Per-pixel Displacement with Distance
Function

• Using additional 3D textures rising
memory footprint to much

• Impractical

– Cone Step Mapping

– Relaxed Cone Step Mapping

Cone Step Mapping

• CSM (Dummer 2006)
– Based on Cone Maps

• Associate circular cone to each texel of
height field

• Per-texel cone is the largest cone, not
intersecting the height field

– Performs linear search with step length
determined by actual cone radius
• Leaps empty space

– Conservative approach
• Allows accurate intersection computation

– Requires additional uncompressed 1x8bit
texture for cone angles

Cone Step Mapping

• Pros

– Very fast

• Requires significantly smaller number of
iterations than pure linear methods

• Under-sampling provides distortions
artifact, less noticeable than interleaving

– Accurate

• There is no possibility to miss a feature

Cone Step Mapping

• Cons

– May not converge in reasonable number
of steps

• Needs iteration cap

– Performance highly dependant on height
field complexity

– Horrendous preprocessing time

• 256^2 - ~2 min

• 512^2 - ~14 min

• 1024^2 - ~7.5 h

– Effectively impractical for interactive
artist tweaking or on-the-fly generation

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

CSM

View Ray

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

CSM

View Ray

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

CSM

View Ray

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

CSM

View Ray

False

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

Correct

CSM

HIT

View Ray

Quadtree Displacement
Mapping

• QDM

– GPU optimized version of classic
terrain rendering, hierarchical ray
traycing algorithm [Cohen ans Sake
1993]

– uses mipmap structure resembling a
dense quadtree storing minimum
depth to the base plane of height
field

Quadtree Structure

• Simple construction

– Mipmapping with min operator
instead of average

• Hardware optimized

• Small memory footprint

– 1x8bit texture with MipMaps

Quadtree Structure

• Quadtree can be generated on-
the-fly

– Negligible performance loss

GF 8800 256^2 512^2 1024^2 2048^2

Quadtree 0.15ms 0.25ms 1.15ms 2.09ms

CSM < 2min <14 min <8h /

QDM

• Ray tracing

– Traverse the quadtree

• From root (max MIP-hierarchy level)

• To lowest leaf (MIP-hierarchy Level 0)

– MIP Level 0

• Accurate intersection

• Can get inter-texel results using

– Linear approximation

– Binary Search

– Bilinear Patch

Ray tracing

• While(Hierarchy_Level > 0)

– Depth =getMaxDepth(Pos,Level)

– If(Ray_Depth < Depth)

• Move_Ray_To_Nearest_Intersection

– Else

• Descend_One_Hierarchy_Level

• Find_Accurate_Intersection

QDM construction

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

QDM construction

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

QDM construction

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

QDM construction

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

QDM construction

z

H
ei

g
h

t

0.0

0.0
1.0

1.0UV Texture Space

QDM construction

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

z

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

QDM Ray tracing

• Algebraically perform intersection test
between Ray, Cell boundary and minimum
depth plane
– Compute the nearest intersection and move the

ray
– In case of cell crossing choose the nearest one

• Ray is traversing through discrete data set
– We must use integer math for correct ray

position calculation
• SM 4.0 – accurate and fast
• SM 3.0 – emulation and slower

– Point Filtering
• LinearMipMapLinear is possible but may introduce

some artifacts
– Trade samplers for artifacts
– i.e. when using same texture for normal and depth

storage

QDM Ray tracing

• Refinement
– LEVEL 0 yields POINT discrete results
– Depending on surface magnification and

need for inter-texel accuracy additional
refinement method may be used
• Binary Search

– Usable for non linear surfaces

• Linear piecewise approximation
– Fast
– Accurate due to approximation between 2

texels only

• Bilateral Patch
– most accurate for analytic surfaces
– Requires additional memory
– slow

QDM Ray tracing

• Fixed iteration count

– Complexity O(log(n))

• Still may be prohibitive

– Set maximum iteration count

QDM Ray tracing

• Method degeneration
– Algorithm can’t go up in hierarchy

• Typical scenario at feature edge
– Ray reaches low level and passes by (cell

crosses)

– Further ray advances are at current or lower
level – degenerates to linear search

– Possible solutions
• Compute the optimal level after cell cross –

expensive, doesn’t suit GPU

• Go one level up after node crossing
– Simple and fast – works for most cases

– Solution performance gain can be seen
when using high iteration cap

QDM LOD

• LOD scheme
– Can’t use traditional MipMapping

– Limit stop condition to LOD level
computed from current MIP level
• High performance gain

• Small feature fidelity loss at grazing angles
– Mostly unnoticeable

– Dynamically adjust iteration cap
• Linear function of angle between geometric

normal and viewing vector

– Fade QDM depth scale (0 = normal
mapping only) by linear function of
camera space Z

QDM Storage

• QDM is a discrete data set

– Needs accuracy

• Uncompressed textures preferable

– 1x8BIT uncompressed texture

– With accurate integer math possible
to use compressed data

• DXT5 alpha interpolation – bearable

– May exhibit small artifacts at feature
edges depending on height field profile

QDM

• Pros
– Accurate under any circumstances
– Fast and scalable

• Faster than any online solution for high
depth scale and high resolution height fields
(>512^2 worth consideration)

– Negligible additional memory footprint
– Negligible preprocessing time
– Trades iteration count for calculation

quality
• High ALU:TEX rate

– Good for upcoming GPU
– Not that great for current generation…

– Other benefits of using quadtree data…

QDM

• Cons

– Slow per iteration

– Uses tex2Lod with random access

• Incredibly slow on current GPUs

– High cache miss ratio

– 30% increase in sampling performance
due to 3D texture usage

» However impractical for memory
reasons

– Not that fast for small depth scale
and small resolutions

Comparison

• Analytical performance

– Relief Mapping ~ sqrt(n)

– CSM <= sqrt(n)

– QDM ~ log(n)

Comparison

• Convergence
(iteration count)

POM

QDM

0

256

128

Comparison

• Following comparisons shows accuracy and
performance difference between POM and
QDM in real game scenario of Two Worlds 2

• CSM and RCSM were thought to be
impractical for production due to
preprocessing time
– We assume RCSM being the fastest possible

method for height fields < 1024^2
– RCSM results come from test framework, where

it outperformed every other solution by at least
50%

– Several cases exist where due to height field
complexity RCSM is unusable

– We didn’t test for >1024^2
• Life is too short ;)

Comparison

• Average Scene Results – full screen
effect (Full HD) on GeForce 260 GTX

– Iteration count set for non artifact rendering
• Even at grazing angles

– Various height fields of resolution 512^2 –
1024^2

– Timing given = technique time – normal
mapping time

Depth Scale POM QDM

1.0 5ms 5.66ms

1.5 6.66ms 6.7ms

5.0 18.87ms 9ms

POM Depth Scale 1.0

QDM Depth Scale 1.0

POM Depth Scale 1.5

QDM Depth Scale 1.5

POM Depth Scale 5.0

QDM Depth Scale 5.0

Comparison

• Extreme detail test case

– one full screen surface at grazing angle

– 2048^2

– High depth scale

– High frequency height field details

POM QDM

73ms 14ms

Self-shadowing

• Features of the height map can
cast shadows onto the surface

• We can test if the displaced point
P on the surface is visible from the
light source L

– Ray trace from the point to the light
source

– If intersects with the height field we
are in shadow

Self-shadowing
H

ei
g

h
t

0.0

0.0

1.0

1.0UV Texture Space

View Ray

Light Ray

HIT – point in shadow

Self-shadowing

• Reverse ray tracing is expensive and
yields hard shadows
– N*Ray tracing cost

• We can calculate horizon visibility to
obtain self-shadowing (POM 2005)
– Sample along height field from displaced

point in direction of the light source

– Compute height profile angle by
OP(P_height – Pn_height)
• Pn – n-th sample in L direction

• OP – operator : min/max , avg…

– Stop when height profile over light ray

Self-shadowing

• We can obtain soft shadows by
filtering sampled values
– Having blocker height we use linear

distance function to approximate
penumbra size

• Algorithm complexity O(n)
– n – number of height field texels along

given direction

• For performance reasons we limit
sample count
– Limits shadow effective length

– Look out for aliasing

Self-shadowing
Penumbra calculation

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

Light

Blocker Height

Self-shadowing

• We can further approximate soft
shadows just by horizon visibility
query in given light direction

float2 lDir = (float2(l.x, -l.y)) * dScale;

float h0 = tex2D(hTexture, P).w;

float h = h0;

h = min(1.0, tex2D(hTexture, P + lDir).w);

h = min(h, tex2D(hTexture, P + 0.750 * lDir).w);

h = min(h, tex2D(hTexture, P + 0.500 * lDir).w);

h = min(h, tex2D(hTexture, P + 0.250 * lDir).w);

float shadow = 1.0 - saturate((h0 - h) * selfShadowStrength);

SS OFF

SS ON

QDM Self-shadowing

• Observation for light occlusion
computation
– Small scale details at distance have

negligible impact on the total occlusion
outcome

• We can approximate further lying
profile features using maximum
height data from QDM
– Minimize needed number of queries

• Full profile can be obtained in log(n)
steps opposed to (n)

• We compute penumbra shadows by
correct distance scaling of shadows

QDM Self-shadowing
Penumbra calculation

H
ei

g
h

t

0.0

0.0

1.0

1.0UV Texture Space

Light

Blocker Height

QDM Self-shadowing

• Sample code

– Fast

– Values tweaked by artist

float2 lDir = (float2(l.x, -l.y)) * dScale;

float h0 = tex2Dlod(heightTexture, float4(P,0,0)).w;

float h = h0;

h = min(1.0, w1 * tex2Dlod(heightTexture, float4(P + 1.0 * lDir,0,3.66)).w);

h = min(h, w2 * tex2Dlod(heightTexture, float4(P + 0.8 * lDir,0,3.00)).w);

h = min(h, w3 * tex2Dlod(heightTexture, float4(P + 0.6 * lDir,0,2.33)).w);

h = min(h, w4 * tex2Dlod(heightTexture, float4(P + 0.4 * lDir,0,1.66)).w);

h = min(h, w5 * tex2Dlod(heightTexture, float4(P + 0.2 * lDir,0,1.00)).w);

float shadow = 1.0 - saturate((h0 - h) * selfShadowStrength);

return shadow;

QDM Self-shadowing

• Self-shadowing

– Adds depth

– Quality

– Moderate cost

• Full search only log(n)

• Depends on shadow length (iteration cap)

• Independent reads

• Fast ALU

• Full screen effect on test scene/machine

– 0.5ms

QDM SS OFF

QDM SS ON

Ambient Occlusion

• AO
– Represents total light visibility for point

being lit

– Adds depth

– Can be computed and approximated
similarly to self shadowing
• We perform several horizon occlusion

queries in different directions

– Need to calculate only when height field
changes

– Especially useful for large scale terrain
scenarios (i.e. darkening objects laying
in a valley)

Ambient Occlusion

• Horizon queries
– For each pixel perform horizon queries in

const n equally spaced directions and
average results
• Fast

– n*cost of horizon profile querying

• May need many directions
– 4-12 shall work fine

– Can use jittering
• For each pixel rotate directions by random
• Can get away with 4 directions

– Uses dependant reads
– Still better results than more directions

• Generally expensive
– Use at content generation
– If dynamic use time amortization

Surface Blending

• Used mainly in terrain rendering

• Commonly by alpha blend
– V = w * V1 + (1-w) * V2

• Blend weights typically encoded at
vertex color
– Weights being interpolated

• More accurate and flexible
encoding blends in textures
– Problematic

– Large memory footprint

Surface Blending

• Alpha blending is not a good
operator for surface blending

– Surface exhibit more variety in
blends than simple gradients from
per-vertex interpolation

– In real life surfaces don’t blend

• What we see is actually the highest
material (or material being on top)

• Rocks and sand – at blend we should see
rocks tops

Height Blending

• Height blending

– Novel approach using height
information as additional blend
coefficient

f1 = tex2Dlod(gTerraTex0Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.a = 1.0 - f1.a;

f2 = tex2Dlod(gTerraTex1Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.b = 1.0 - f2.a;

f3 = tex2Dlod(gTerraTex2Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.g = 1.0 - f3.a;

f4 = tex2Dlod(gTerraTex3Sampler, float4(TEXUV.xy, 0, Mip)).rgba;

FinalH.r = 1.0 - f4.a;

FinalH*= IN.AlphaBlends;

float Blend = dot(FinalH, 1.0) + e;

FinalH/= Blend;

FinalTex = FinalH.a * f1 + FinalH.b * f2 + FinalH.g * f3 + FinalH.r * f4;

Blend Weights

Final Blend Color

Height Blending

• HB

– Adds variety

– Cost is minimal

• Opposed to discussed methods

– Prefers the highest surface

• Intersection search phase therefore needs
to find highest point only

Displacement with HB

• Displacement mapping

• May use any intersection search
technique

• Need to reconstruct surface profile
from blend weights and individual
height fields

– Commonly alpha blend used for
surface reconstruction

• H = alphaBlend(h1,h2,h3,h4,W_Vec)

Displacement with HB

• Displacement mapping with HB

– Using HB operator seems more
natural for surface reconstruction

– New blend operator

• HB = max(h1,h2,h3,h4)

– Optimal in terms of convergence

• HB >= alphaBlend

– Ray will hit HB surface faster

Displacement with HB

• While searching intersection using any
online algorithm simply substitute actual h
sample by result of blend equation

• Can cut search region by max blend weight
• Using per-vertex blend weights produces

view dependant depth floating artifacts
– Negligible with small depth scale and depth

scale minimization at blend zones

• For correct results use per-pixel blend
weights
– Can compute small texture from vertex blend

weights

Displacement with HB

• While searching intersection using any
online algorithm simply substitute actual h
sample by result of blend equation

• Using per-vertex blend weights produces
view dependant depth floating artifacts
– Can not reconstruct correct surface height as

blend weights are constant taken from view
vector position

– Negligible with small depth scale and depth
scale minimization at blend zones

• For correct results use per-pixel blend
weights
– Can compute small texture from vertex blend

weights
– Additional sample
– Must use for high depth scale and accuracy

Vertex Blend Artifact
H

ei
g

h
t

0.0

0.0

1.0

1.0UV Texture Space

View 1 View 2

Weight 2

Weight 1

Weight 1 * P.Height != Weight2 * P.Height

Displacement with HB

• Preprocessed data relying on
distance (Distance Function, CSM)
cannot be used with blend weights
without pre-computation

• Preprocessed data relying on
depth can be used with modified
weight structures

QDM with HB

• QDM is based on depth data

• Observation

– max(x1,…,xn) * max(w1,…,wn)
>=

max[(x1,…,xn) * (w1,…,wn)]

• QDM1 * QDM2 = Conservative QDM

– CQDM at Level 0 represents exact
surface blend with HB operator

• This is possible only with non-
aggregate operators (min,max)

– NOT! AVG, Weight AVG – Alpha Blend

QDM with HB

• QDMHB
– Effectively we can use QDM with all its

benefits while blending surfaces for
artifact free rendering

– Cons
• On-the-fly / pre-computed Blend QDM

– Blend Texture from vertex

– QDM from blend texture

• Conservative approach
– Slower convergence

– More iterations may be needed dependant on
field complexity

– In practice <10% more iterations than
needed

QDMHB

Surface blend comparison

• In game scenario on test machine
• Timing given = technique time – normal mapping time

• Per-Vertex Blend with 4 surfaces

Relief Mapping POM POM with HB

3ms 2.5ms 1.25ms

Relief Mapping

POM Alpha Blend

POM Height Blend

Conclusion

• Valid solution for every scenario

– Know what you need

– Compose you solution from given
building blocks

• POM, QDM, Self Shadowing, AO, Height
Blend – Per-Vertex/Pixel

• As needed…

Conclusion

• On limited hardware

– Optimize as much as you can

• Terrain - fast low iteration POM with Per-
Vertex HB, computed only for textures
that really benefit

• Special Features – QDM with Soft
Shadows

• General Objects – use low iteration POM,
Soft Shadows at artist preference, check
whether QDM is optimal for >1024^2

Conclusion

• On limited hardware

– Trade ALU for bandwidth and memory

• Generate specular textures on the fly

– From difusse

– By artist set per texture coefficients for
functions input

» Pow

» Scale

» Invert

– Our terrain solution as seen on screens
utilize only one DXT5 texture while using
Shirmay-Kallos lighting equation

Conclusion

• Look out for future GPUs

– Proposed high ALU methods will be
even more beneficial for new
architecture

– Ray tracing vs. tessellation ?

• Will see…

• Happy surfacing!

Acknowledgements

• Reality Pump

– especially Mariusz Szaflik – RP lead
programmer for continuous help in
graphic struggles

Additional Info

• Additional information will be
available in upcoming technical
article, go to

• www.drobot.org – for details

• hello@drobot.org

http://www.drobot.org/

